Observation of a New State in the Search for the Higgs Boson at CMS

Observation of a New State in the Search for the Higgs Boson at CMS

Author: Giovanni Petrucciani

Publisher: Springer

Published: 2014-12-04

Total Pages: 232

ISBN-13: 8876424822

DOWNLOAD EBOOK

This book describes the searches that lead to the discovery of a Higgs boson performed at CMS, one of the two main experiments at the CERN LHC. After an overview of the theory and of the CMS experiment, all search channels are described, with emphasis on the ones with the best sensitivity. The statistical methodology used to analyse and the outcomes of the searches and the discovery results are then presented in detail.


Search for the Higgs Boson Produced in Association with Top Quarks with the CMS Detector at the LHC

Search for the Higgs Boson Produced in Association with Top Quarks with the CMS Detector at the LHC

Author: Cristina Martin Perez

Publisher: Springer Nature

Published: 2022-02-09

Total Pages: 291

ISBN-13: 3030902064

DOWNLOAD EBOOK

In this work, the interaction between the Higgs boson and the top quark is studied with the proton-proton collisions at 13 TeV provided by the LHC at the CMS detector at CERN (Geneva). At the LHC, these particles are produced simultaneously via the associate production of the Higgs boson with one top quark (tH process) or two top quarks (ttH process). Compared to many other possible outcomes of the proton-proton interactions, these processes are very rare, as the top quark and the Higgs boson are the heaviest elementary particles known. Hence, identifying them constitutes a significant experimental challenge. A high particle selection efficiency in the CMS detector is therefore crucial. At the core of this selection stands the Level-1 (L1) trigger system, a system that filters collision events to retain only those with potential interest for physics analysis. The selection of hadronically decaying τ leptons, expected from the Higgs boson decays, is especially demanding due to the large background arising from the QCD interactions. The first part of this thesis presents the optimization of the L1 τ algorithm in Run 2 (2016-2018) and Run 3 (2022-2024) of the LHC. It includes the development of a novel trigger concept for the High-Luminosity LHC, foreseen to start in 2027 and to deliver 5 times the current instantaneous luminosity. To this end, sophisticated algorithms based on machine learning approaches are used, facilitated by the increasingly modern technology and powerful computation of the trigger system. The second part of the work presents the search of the tH and ttH processes with the subsequent decays of the Higgs boson to pairs of τ lepton, W bosons or Z bosons, making use of the data recorded during Run 2. The presence of multiple particles in the final state, along with the low cross section of the processes, makes the search an ideal use case for multivariant discriminants that enhance the selectivity of the signals and reject the overwhelming background contributions. The discriminants presented are built using state-of-the-art machine learning techniques, able to capture the correlations amongst the processes involved, as well as the so-called Matrix Element Method (MEM), which combines the theoretical description of the processes with the detector resolution effects. The level of sophistication of the methods used, along with the unprecedented amount of collision data analyzed, result in the most stringent measurements of the tH and ttH cross sections up to date.


Search for Exotic Higgs Boson Decays to Merged Diphotons

Search for Exotic Higgs Boson Decays to Merged Diphotons

Author: Michael Andrews

Publisher: Springer Nature

Published: 2023-03-02

Total Pages: 193

ISBN-13: 3031250915

DOWNLOAD EBOOK

This book describes the first application at CMS of deep learning algorithms trained directly on low-level, “raw” detector data, or so-called end-to-end physics reconstruction. Growing interest in searches for exotic new physics in the CMS collaboration at the Large Hadron Collider at CERN has highlighted the need for a new generation of particle reconstruction algorithms. For many exotic physics searches, sensitivity is constrained not by the ability to extract information from particle-level data but by inefficiencies in the reconstruction of the particle-level quantities themselves. The technique achieves a breakthrough in the reconstruction of highly merged photon pairs that are completely unresolved in the CMS detector. This newfound ability is used to perform the first direct search for exotic Higgs boson decays to a pair of hypothetical light scalar particles H→aa, each subsequently decaying to a pair of highly merged photons a→yy, an analysis once thought impossible to perform. The book concludes with an outlook on potential new exotic searches made accessible by this new reconstruction paradigm.


The Particle at the End of the Universe

The Particle at the End of the Universe

Author: Sean M. Carroll

Publisher: Dutton Books

Published: 2012

Total Pages: 0

ISBN-13: 9780525953593

DOWNLOAD EBOOK

Examines the effort to discover the Higgs boson particle by tracing the development and use of the Large Hadron Collider and how its findings are dramatically shaping scientific understandings while enabling world-changing innovations.


The Higgs Boson Produced With Top Quarks in Fully Hadronic Signatures

The Higgs Boson Produced With Top Quarks in Fully Hadronic Signatures

Author: Daniel Salerno

Publisher: Springer Nature

Published: 2019-10-25

Total Pages: 207

ISBN-13: 3030312577

DOWNLOAD EBOOK

The work presented in this PhD dissertation is the first search at CMS for Higgs bosons produced in association with top quarks (ttH) in a final state consisting of only jets. The results presented in this book uncover a new class of ttH events that will help us elucidate our understanding of the Yukawa sector interactions between the Higgs boson and the top quark. Despite this being the most common decay signature for ttH, a large contamination of SM backgrounds makes it the most challenging for extracting a signal from data. The PhD thesis presents many sophisticated tools and techniques that were developed in order to overcome these challenges. These tools pave the way for future analyses to investigate other standard model and beyond-standard model physics.