Measurement of Dijet Angular Distributions and Search for Quark Compositeness in Pp Collisions at $sqrt{s}

Measurement of Dijet Angular Distributions and Search for Quark Compositeness in Pp Collisions at $sqrt{s}

Author:

Publisher:

Published: 2011

Total Pages: 24

ISBN-13:

DOWNLOAD EBOOK

Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at s√ = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV is obtained at the 95% confidence level.


Search for Quark Compositeness in Dijet Angular Distributions from Pp Collisions at Sqrt(s)

Search for Quark Compositeness in Dijet Angular Distributions from Pp Collisions at Sqrt(s)

Author:

Publisher:

Published: 2012

Total Pages: 29

ISBN-13:

DOWNLOAD EBOOK

A search for quark compositeness using dijet angular distributions from pp collisions at sqrt(s) = 7 TeV is presented. The search has been carried out using a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS experiment at the LHC. Normalized dijet angular distributions have been measured for dijet invariant masses from 0.4 TeV to above 3 TeV and compared with a variety of contact interaction models, including those which take into account the effects of next-to-leading-order QCD corrections. The data are found to be in agreement with the predictions of perturbative QCD, and lower limits are obtained on the contact interaction scale, ranging from 7.5 up to 14.5 TeV at 95% confidence level.


Search for Quark Compositeness with the Dijet Centrality Ratio in $pp$ Collisions at $\sqrt{s}

Search for Quark Compositeness with the Dijet Centrality Ratio in $pp$ Collisions at $\sqrt{s}

Author:

Publisher:

Published: 2010

Total Pages: 24

ISBN-13:

DOWNLOAD EBOOK

A search for quark compositeness in the form of quark contact interactions, based on hadronic jet pairs (dijets) produced in proton-proton collisions at sqrt(s)=7 TeV, is described. The data sample of the study corresponds to an integrated luminosity of 2.9 inverse picobarns collected with the CMS detector at the LHC. The dijet centrality ratio, which quantifies the angular distribution of the dijets, is measured as a function of the invariant mass of the dijet system and is found to agree with the predictions of the Standard Model. A statistical analysis of the data provides a lower limit on the energy scale of quark contact interactions. The sensitivity of the analysis is such that the expected limit is 2.9 TeV; because the observed value of the centrality ratio at high invariant mass is below the expectation, the observed limit is 4.0 TeV at the 95% confidence level.


Search for New Physics with Dijet Angular Distributions in Proton-proton Collisions at $\sqrt{s}$

Search for New Physics with Dijet Angular Distributions in Proton-proton Collisions at $\sqrt{s}$

Author:

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A search is presented for extra spatial dimensions, quantum black holes, and quark contact interactions in measurements of dijet angular distributions in proton-proton collisions at sqrt(s) = 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 2.6 inverse femtobarns. The distributions are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Limits for different contact interaction models are obtained in a benchmark model, valid to next-to-leading order in QCD, in which only left-handed quarks participate, with quark contact interactions excluded up to a scale of 11.5 or 14.7 TeV for destructive or constructive interference, respectively. The production of quantum black holes is excluded for masses below 7.8 or 5.3 TeV, depending on the model. The lower limits for the scales of virtual graviton exchange in the Arkani-Hamed--Dimopoulos--Dvali model of extra spatial dimensions are in the range 7.9-11.2 TeV, and are the most stringent set of limits available.


Inclusive b Jet Production in Proton-Proton Collisions

Inclusive b Jet Production in Proton-Proton Collisions

Author: Patrick L.S. Connor

Publisher: Springer Nature

Published: 2019-11-29

Total Pages: 325

ISBN-13: 3030343839

DOWNLOAD EBOOK

^ 74 GeV and |y| 2.4; the b jets must contain a B hadron. The measurement has significant statistics up to p T ∼ O(TeV). Advanced methods of unfolding are performed to extract the signal. It is found that fixed-order calculations with underlying event describe the measurement well.


Search for New Phenomena in Dijet Mass and Angular Distributions from $pp$ Collisions at $\sqrt{s}$

Search for New Phenomena in Dijet Mass and Angular Distributions from $pp$ Collisions at $\sqrt{s}$

Author:

Publisher:

Published: 2016

Total Pages: 21

ISBN-13:

DOWNLOAD EBOOK

This Letter describes a model-agnostic search for pairs of jets (dijets) produced by resonant and non-resonant phenomena beyond the Standard Model in 3.6 fb-1 of proton–proton collisions with a centre-of-mass energy of √s = 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the smoothly falling prediction of the Standard Model. The data are also compared to a Monte Carlo simulation of Standard Model angular distributions derived from the rapidity of the two jets. No evidence of anomalous phenomena is observed in the data, which are used to exclude, at 95% CL, quantum black holes with threshold masses below 8.3 TeV, 8.1 TeV, or 5.1 TeV5.1 TeV in three different benchmark scenarios; resonance masses below 5.2 TeV for excited quarks, 2.6 TeV in a W' model, a range of masses starting from mZ' = 1.5 TeV and couplings from gq = 0.2 in a Z' model; and contact interactions with a compositeness scale below 12.0 TeV and 17.5 TeV respectively for destructive and constructive interference between the new interaction and QCD processes. These results significantly extend the ATLAS limits obtained from 8 TeV data. As a result, gaussian-shaped contributions to the mass distribution are also excluded if the effective cross-section exceeds values ranging from approximately 50–300 fb for masses below 2 TeV to 2–20 fb for masses above 4 TeV.


We Have No Idea

We Have No Idea

Author: Jorge Cham

Publisher: Penguin

Published: 2018-05-08

Total Pages: 369

ISBN-13: 0735211523

DOWNLOAD EBOOK

Prepare to learn everything we still don’t know about our strange and mysterious universe Humanity's understanding of the physical world is full of gaps. Not tiny little gaps you can safely ignore —there are huge yawning voids in our basic notions of how the world works. PHD Comics creator Jorge Cham and particle physicist Daniel Whiteson have teamed up to explore everything we don't know about the universe: the enormous holes in our knowledge of the cosmos. Armed with their popular infographics, cartoons, and unusually entertaining and lucid explanations of science, they give us the best answers currently available for a lot of questions that are still perplexing scientists, including: * Why does the universe have a speed limit? * Why aren't we all made of antimatter? * What (or who) is attacking Earth with tiny, superfast particles? * What is dark matter, and why does it keep ignoring us? It turns out the universe is full of weird things that don't make any sense. But Cham and Whiteson make a compelling case that the questions we can't answer are as interesting as the ones we can. This fully illustrated introduction to the biggest mysteries in physics also helpfully demystifies many complicated things we do know about, from quarks and neutrinos to gravitational waves and exploding black holes. With equal doses of humor and delight, Cham and Whiteson invite us to see the universe as a possibly boundless expanse of uncharted territory that's still ours to explore.