Mathematical and Computer Programming Techniques for Computer Graphics

Mathematical and Computer Programming Techniques for Computer Graphics

Author: Peter Comninos

Publisher: Springer Science & Business Media

Published: 2010-04-06

Total Pages: 556

ISBN-13: 1846282926

DOWNLOAD EBOOK

Provides a comprehensive and detailed coverage of the fundamentals of programming techniques for computer graphics Uses lots of code examples, encouraging the reader to explore and experiment with data and computer programs (in the C programming language)


Mathematics for Computer Graphics

Mathematics for Computer Graphics

Author: John Vince

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 251

ISBN-13: 1846282837

DOWNLOAD EBOOK

This is a concise and informal introductory book on the mathematical concepts that underpin computer graphics. The author, John Vince, makes the concepts easy to understand, enabling non-experts to come to terms with computer animation work. The book complements the author's other works and is written in the same accessible and easy-to-read style. It is also a useful reference book for programmers working in the field of computer graphics, virtual reality, computer animation, as well as students on digital media courses, and even mathematics courses.


Mathematical Elements for Computer Graphics

Mathematical Elements for Computer Graphics

Author: David F. Rogers

Publisher: McGraw-Hill Science, Engineering & Mathematics

Published: 1990

Total Pages: 648

ISBN-13:

DOWNLOAD EBOOK

This text is ideal for junior-, senior-, and graduate-level courses in computer graphics and computer-aided design taught in departments of mechanical and aeronautical engineering and computer science. It presents in a unified manner an introduction to the mathematical theory underlying computer graphic applications. It covers topics of keen interest to students in engineering and computer science: transformations, projections, 2-D and 3-D curve definition schemes, and surface definitions. It also includes techniques, such as B-splines, which are incorporated as part of the software in advanced engineering workstations. A basic knowledge of vector and matrix algebra and calculus is required.


3D Computer Graphics

3D Computer Graphics

Author: Samuel R. Buss

Publisher: Cambridge University Press

Published: 2003-05-19

Total Pages: 397

ISBN-13: 1139440381

DOWNLOAD EBOOK

This textbook, first published in 2003, emphasises the fundamentals and the mathematics underlying computer graphics. The minimal prerequisites, a basic knowledge of calculus and vectors plus some programming experience in C or C++, make the book suitable for self study or for use as an advanced undergraduate or introductory graduate text. The author gives a thorough treatment of transformations and viewing, lighting and shading models, interpolation and averaging, Bézier curves and B-splines, ray tracing and radiosity, and intersection testing with rays. Additional topics, covered in less depth, include texture mapping and colour theory. The book covers some aspects of animation, including quaternions, orientation, and inverse kinematics, and includes source code for a Ray Tracing software package. The book is intended for use along with any OpenGL programming book, but the crucial features of OpenGL are briefly covered to help readers get up to speed. Accompanying software is available freely from the book's web site.


Physically-Based Modeling for Computer Graphics

Physically-Based Modeling for Computer Graphics

Author: Ronen Barzel

Publisher: Morgan Kaufmann

Published: 2013-10-22

Total Pages: 359

ISBN-13: 0080916449

DOWNLOAD EBOOK

Physically-Based Modeling for Computer Graphics: A Structured Approach addresses the challenge of designing and managing the complexity of physically-based models. This book will be of interest to researchers, computer graphics practitioners, mathematicians, engineers, animators, software developers and those interested in computer implementation and simulation of mathematical models. Presents a philosophy and terminology for "Structured Modeling" Includes mathematicl and programming techniques to support and implement the methodology Covers a library of model components, including rigid-body kinematics, rigid-body dynamics, and force-based constraint methods Includes illustrations of several ample models created from these components Foreword by Al Barr


Mathematics for 3D Game Programming and Computer Graphics

Mathematics for 3D Game Programming and Computer Graphics

Author: Eric Lengyel

Publisher:

Published: 2020-08

Total Pages:

ISBN-13: 9780357671092

DOWNLOAD EBOOK

Sooner or later, all game programmers run into coding issues that require an understanding of mathematics or physics concepts such as collision detection, 3D vectors, transformations, game theory, or basic calculus. Unfortunately, most programmers frequently have a limited understanding of these essential mathematics and physics concepts. MATHEMATICS AND PHYSICS FOR PROGRAMMERS, THIRD EDITION provides a simple but thorough grounding in the mathematics and physics topics that programmers require to write algorithms and programs using a non-language-specific approach. Applications and examples from game programming are included throughout, and exercises follow each chapter for additional practice. The book's companion website provides sample code illustrating the mathematical and physics topics discussed in the book.


Computer Graphics for Java Programmers

Computer Graphics for Java Programmers

Author: Leen Ammeraal

Publisher: Springer

Published: 2017-10-12

Total Pages: 388

ISBN-13: 3319633570

DOWNLOAD EBOOK

This third edition covers fundamental concepts in creating and manipulating 2D and 3D graphical objects, including topics from classic graphics algorithms to color and shading models. It maintains the style of the two previous editions, teaching each graphics topic in a sequence of concepts, mathematics, algorithms, optimization techniques, and Java coding. Completely revised and updated according to years of classroom teaching, the third edition of this highly popular textbook contains a large number of ready-to-run Java programs and an algorithm animation and demonstration open-source software also in Java. It includes exercises and examples making it ideal for classroom use or self-study, and provides a perfect foundation for programming computer graphics using Java. Undergraduate and graduate students majoring specifically in computer science, computer engineering, electronic engineering, information systems, and related disciplines will use this textbook for their courses. Professionals and industrial practitioners who wish to learn and explore basic computer graphics techniques will also find this book a valuable resource.


Math for Programmers

Math for Programmers

Author: Paul Orland

Publisher: Manning Publications

Published: 2021-01-12

Total Pages: 686

ISBN-13: 1617295353

DOWNLOAD EBOOK

In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks


Real-Time Shader Programming

Real-Time Shader Programming

Author: Ron Fosner

Publisher: Elsevier

Published: 2003-01-10

Total Pages: 425

ISBN-13: 0080515908

DOWNLOAD EBOOK

Now that PC users have entered the realm of programmable hardware, graphics programmers can create 3D images and animations comparable to those produced by RenderMan's procedural programs—-but in real time. Here is a book that will bring this cutting-edge technology to your computer. Beginning with the mathematical basics of vertex and pixel shaders, and building to detailed accounts of programmable shader operations, Real-Time Shader Programming provides the foundation and techniques necessary for replicating popular cinema-style 3D graphics as well as creating your own real-time procedural shaders. A compelling writing style, color illustrations throughout, and scores of online resources make Real-Time Shader Programming an indispensable tutorial/reference for the game developer, graphics programmer, game artist, or visualization programmer, to create countless real-time 3D effects. * Contains a complete reference of the low-level shader language for both DirectX 8 and DirectX 9 * Provides an interactive shader demonstration tool (RenderMonkeyTM) for testing and experimenting * Maintains an updated version of the detailed shader reference section at www.directx.com * Teaches the latest shader programming techniques for high-performance real-time 3D graphics