Living Materials for the Deployment of Genetically Engineered Organisms

Living Materials for the Deployment of Genetically Engineered Organisms

Author: Eleonore Claure Cecilia Tham

Publisher:

Published: 2018

Total Pages: 106

ISBN-13:

DOWNLOAD EBOOK

The primary objective of this work is to establish an innovative and broad platform to engineer living materials and assemble them into functional devices. First, we assemble bacterial sensor communities into core-shell hydrogel structures to address the major challenge of biocontainment. Biosafety has become a major challenge for synthetic biology tools to transition from laboratory experiments to real applications and prevent potential negative impacts. Genetic and chemical containment strategies have been implemented to restrict the growth and replication of genetically modified organisms while no robust physical containment has been proposed. We developed a hydrogel-based encapsulation technique by leveraging a tough biocompatible shell and genetically recoded organisms to achieve unprecedented containment performance. Then, we implemented biocontainment into wearable hydrogel devices. We use stretchable, robust, and biocompatible hydrogel-elastomer hybrids to host genetically programed bacteria, thus creating a set of stretchable and wearable living materials and devices that possess unprecedented functions and capabilities. Lastly, we genetically encode the formation of biological polymers in E.coli to achieve the self-assembly of bacterial devices. Generating complex biomaterials often requires the coordinated and precise expression of several genes and light induction of biological material formation and patterning offer a powerful toolkit to achieve the necessary degree of precision and control. We leveraged a multichromatic optogenetic control in the bacterium Escherichia coli to express the principal structural component biological nanowires.


Towards Engineering Living Functional Materials

Towards Engineering Living Functional Materials

Author: Tzu-Chieh Tang (Ph. D.)

Publisher:

Published: 2021

Total Pages: 221

ISBN-13:

DOWNLOAD EBOOK

Synthetic biology has become one of the most rapidly evolving research fields, with impacts on all aspects of our daily life. Through applying engineering principles to programming biological systems, synthetic biology provides advanced techniques to program organisms to perform desired tasks, similar to machines created by humans. Today, it has enabled the development of alternative meat substitutes, biosensors for water contamination, and living fertilizers that promote plant growth. The grand challenge to bridge the concept-to-product gap is twofold: scalability and safe deployment. First, most model microorganisms cannot produce a macroscale matrix to sustain themselves as standalone devices. The field of engineered living materials (ELMs) aims to recapitulate the remarkable properties of natural biology to create novel, growable, multifunctional materials using genetically engineered organisms. Nevertheless, most relevant pioneering work was created using nano- to microscale biofilm, which has rather small yields and usually requires costly modification. Second, releasing genetically modified microorganisms (GMMs) into the field for food, water, or agricultural applications is often considered risky due to the uncertainty of wild-type organisms acquiring undesirable traits, such as antibiotic resistance, from the GMMs. A significant effort in addressing these unmet needs is called for. This Thesis starts with an introduction of genetic circuits and an in-depth review of the current trends in materials synthetic biology, which includes two major categories of ELMs: self-organizing functional materials and hybrid living materials. The following chapters describe the technologies developed to achieve high scalability and safe deployment of ELMs in these two categories and living devices suitable for real-world applications. Finally, a detailed outlook summarizes the challenges and prospects for materials synthetic biology and engineering living functional materials.


Genetically Engineered Crops

Genetically Engineered Crops

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-01-28

Total Pages: 607

ISBN-13: 0309437385

DOWNLOAD EBOOK

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.


Preparing for Future Products of Biotechnology

Preparing for Future Products of Biotechnology

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2017-07-28

Total Pages: 231

ISBN-13: 0309452058

DOWNLOAD EBOOK

Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.


Industrialization of Biology

Industrialization of Biology

Author: National Research Council

Publisher: National Academies Press

Published: 2015-06-29

Total Pages: 158

ISBN-13: 0309316553

DOWNLOAD EBOOK

The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.


Gene Drives on the Horizon

Gene Drives on the Horizon

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-08-28

Total Pages: 231

ISBN-13: 0309437873

DOWNLOAD EBOOK

Research on gene drive systems is rapidly advancing. Many proposed applications of gene drive research aim to solve environmental and public health challenges, including the reduction of poverty and the burden of vector-borne diseases, such as malaria and dengue, which disproportionately impact low and middle income countries. However, due to their intrinsic qualities of rapid spread and irreversibility, gene drive systems raise many questions with respect to their safety relative to public and environmental health. Because gene drive systems are designed to alter the environments we share in ways that will be hard to anticipate and impossible to completely roll back, questions about the ethics surrounding use of this research are complex and will require very careful exploration. Gene Drives on the Horizon outlines the state of knowledge relative to the science, ethics, public engagement, and risk assessment as they pertain to research directions of gene drive systems and governance of the research process. This report offers principles for responsible practices of gene drive research and related applications for use by investigators, their institutions, the research funders, and regulators.


Animal Biotechnology

Animal Biotechnology

Author: National Research Council

Publisher: National Academies Press

Published: 2002-12-29

Total Pages: 201

ISBN-13: 0309084393

DOWNLOAD EBOOK

Genetic-based animal biotechnology has produced new food and pharmaceutical products and promises many more advances to benefit humankind. These exciting prospects are accompanied by considerable unease, however, about matters such as safety and ethics. This book identifies science-based and policy-related concerns about animal biotechnologyâ€"key issues that must be resolved before the new breakthroughs can reach their potential. The book includes a short history of the field and provides understandable definitions of terms like cloning. Looking at technologies on the near horizon, the authors discuss what we know and what we fear about their effectsâ€"the inadvertent release of dangerous microorganisms, the safety of products derived from biotechnology, the impact of genetically engineered animals on their environment. In addition to these concerns, the book explores animal welfare concerns, and our societal and institutional capacity to manage and regulate the technology and its products. This accessible volume will be important to everyone interested in the implications of the use of animal biotechnology.


Safety of Genetically Engineered Foods

Safety of Genetically Engineered Foods

Author: National Research Council

Publisher: National Academies Press

Published: 2004-07-08

Total Pages: 254

ISBN-13: 0309166152

DOWNLOAD EBOOK

Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.


Plant Biotechnology

Plant Biotechnology

Author: Agnès Ricroch

Publisher: Springer Nature

Published: 2021-08-30

Total Pages: 297

ISBN-13: 3030683451

DOWNLOAD EBOOK

Written in easy to follow language, the book presents cutting-edge agriculturally relevant plant biotechnologies and applications in a manner that is accessible to all. This book updates and introduces the scope and method of plant biotechnologies and molecular breeding within the context of environmental analysis and assessment, a diminishing supply of productive arable land, scarce water resources and climate change. New plant breeding techniques including CRISPR-cas system are now tools to meet these challenges both in developed countries and in developing countries. Ethical issues, intellectual property rights, regulation policies in various countries related to agricultural biotechnology are examined. The rapid developments in plant biotechnology are explained to a large audience with relevant examples. New varieties of crops can be adapted to new climatic conditions in order to reduce pest-associated losses and the adverse abiotic effects