Life-Cycle Assessment of Biorefineries

Life-Cycle Assessment of Biorefineries

Author: Edgard Gnansounou

Publisher: Elsevier

Published: 2016-12-20

Total Pages: 324

ISBN-13: 0444635866

DOWNLOAD EBOOK

Life-Cycle Assessment of Biorefineries, the sixth and last book in the series on biomass-biorefineries discusses the unprecedented growth and development in the emerging concept of a global bio-based economy in which biomass-based biorefineries have attained center stage for the production of fuels and chemicals. It is envisaged that by 2020 a majority of chemicals currently being produced through a chemical route will be produced via a bio-based route. Agro-industrial residues, municipal solid wastes, and forestry wastes have been considered as the most significant feedstocks for such bio-refineries. However, for the techno-economic success of such biorefineries, it is of prime and utmost importance to understand their lifecycle assessment for various aspects. Provides state-of-art information on the basics and fundamental principles of LCA for biorefineries Contains key features for the education and understanding of integrated biorefineries Presents models that are used to cope with land-use changes and their effects on biorefineries Includes relevant case studies that illustrate main points


Biorefineries and Chemical Processes

Biorefineries and Chemical Processes

Author: Jhuma Sadhukhan

Publisher: John Wiley & Sons

Published: 2014-11-03

Total Pages: 0

ISBN-13: 9781119990864

DOWNLOAD EBOOK

As the range of feedstocks, process technologies and products expand, biorefineries will become increasingly complex manufacturing systems. Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis presents process modelling and integration, and whole system life cycle analysis tools for the synthesis, design, operation and sustainable development of biorefinery and chemical processes. Topics covered include: Introduction: An introduction to the concept and development of biorefineries. Tools: Included here are the methods for detailed economic and environmental impact analyses; combined economic value and environmental impact analysis; life cycle assessment (LCA); multi-criteria analysis; heat integration and utility system design; mathematical programming based optimization and genetic algorithms. Process synthesis and design: Focuses on modern unit operations and innovative process flowsheets. Discusses thermochemical and biochemical processing of biomass, production of chemicals and polymers from biomass, and processes for carbon dioxide capture. Biorefinery systems: Presents biorefinery process synthesis using whole system analysis. Discusses bio-oil and algae biorefineries, integrated fuel cells and renewables, and heterogeneous catalytic reactors. Companion website: Four case studies, additional exercises and examples are available online, together with three supplementary chapters which address waste and emission minimization, energy storage and control systems, and the optimization and reuse of water. This textbook is designed to bridge a gap between engineering design and sustainability assessment, for advanced students and practicing process designers and engineers.


Lignocellulosic Biorefining Technologies

Lignocellulosic Biorefining Technologies

Author: Avinash P. Ingle

Publisher: John Wiley & Sons

Published: 2020-04-13

Total Pages: 376

ISBN-13: 111956882X

DOWNLOAD EBOOK

A text to the advances and development of novel technologies in the production of high-value products from economically viable raw materials Lignocellulosic Biorefining Technologiesis an essential guide to the most recent advances and developments of novel technologies in the production of various high-value products from economically viable raw materials. Written by a team of experts on the topic, the book covers important topics specifically on production of economical and sustainable products such as various biofuels, organic acids, enzymes, biopigments, biosurfactants, etc. The book highlights the important aspects of lignocellulosic biorefining including structure, function, and chemical composition of the plant cell wall and reviews the details about the various components present in the lignocellulosic biomass and their characterizations. The authors explore the various approaches available for processing lignocellulosic biomass into second generation sugars and focus on the possibilities of utilization of lignocellulosic feedstocks for the production of biofuels and biochemicals. Each chapter includes a range of clear, informative tables and figures, and contains relevant references of published articles. This important text: Provides cutting-edge information on the recent developments in lignocellulose biorefinery Reviews production of various economically important and sustainable products, such as biofuels, organic acids, biopigments, and biosurfactants Highlights several broad-ranging areas of recent advances in the utilization of a variety of lignocellulosic feedstocks Provides a valuable, authoritative reference for anyone interested in the topic Written for post-graduate students and researchers in disciplines such as biotechnology, bioengineering, forestry, agriculture, and chemical industry, Lignocellulosic Biorefining Technologies is an authoritative and updated guide to the knowledge about various biorefining technologies.


Waste Biorefinery

Waste Biorefinery

Author: Thallada Bhaskar

Publisher: Elsevier

Published: 2018-04-13

Total Pages: 892

ISBN-13: 0444639934

DOWNLOAD EBOOK

Waste Biorefinery: Potential and Perspectives offers data-based information on the most cutting-edge processes for the utilisation of biogenic waste to produce biofuels, energy products, and biochemicals – a critical aspect of biorefinery. The book explores recent developments in biochemical and thermo-chemical methods of conversion and the potential generated by different kinds of biomass in more decentralized biorefineries. Additionally, the book discusses the move from 200 years of raw fossil materials to renewable resources and how this shift is accompanied by fundamental changes in industrial manufacturing technologies (from chemistry to biochemistry) and in logistics and manufacturing concepts (from petrochemical refineries to biorefineries). Waste Biorefinery: Potential and Perspectives designs concepts that enable modern biorefineries to utilize all types of biogenic wastes, and to integrate processes that convert byproduct streams to high-value products, achieving higher cost benefits. This book is an essential resource for researchers and students studying biomass, biorefineries, and biofuels/products/processes, as well as chemists, biochemical/chemical engineers, microbiologists, and biotechnologists working in industries and government agencies. Details the most advanced and innovative methods for biomass conversion Covers biochemical and thermo-chemical processes as well as product development Discusses the integration of technologies to produce bio-fuels, energy products, and biochemicals Illustrates specific applications in numerous case studies for reference and teaching purposes


Green Energy to Sustainability: Strategies for Global Industries

Green Energy to Sustainability: Strategies for Global Industries

Author: Alain A. Vertes

Publisher: John Wiley & Sons

Published: 2020-06-10

Total Pages: 702

ISBN-13: 111915202X

DOWNLOAD EBOOK

Reviews the latest advances in biofuel manufacturing technologies and discusses the deployment of other renewable energy for transportation Aimed at providing an interface useful to business and scientific managers, this book focuses on the key challenges that still impede the realization of the billion-ton renewable fuels vision. It places great emphasis on a global view of the topic, reviewing deployment and green energy technology in different countries across Africa, Asia, South America, the EU, and the USA. It also integrates scientific, technological, and business development perspectives to highlight the key developments that are necessary for the global replacement of fossil fuels with green energy solutions. Green Energy to Sustainability: Strategies for Global Industries examines the most recent developments in biofuel manufacturing technologies in light of business, financial, value chain, and supply chain concerns. It also covers the use of other renewable energy sources like solar energy for transportation and proposes a view of the challenges over the next two to five decades, and how these will deeply modify the industrial world in the third millennium. The coming of age of electric vehicles is also looked at, as is the impact of their deployment on the biomass to biofuels value chain. Offers extensive updates on the field of green energy for global industries Covers the structure of the energy business; chemicals and diesel from biomass; ethanol and butanol; hydrogen and methane; and more Provides an expanded focus on the next generation of energy technologies Reviews the latest advances in biofuel manufacturing technologies Integrates scientific, technological and business perspectives Highlights important developments needed for replacing fossil fuels with green energy Green Energy to Sustainability: Strategies for Global Industries will appeal to academic researchers working on the production of fuels from renewable feedstocks and those working in green and sustainable chemistry, and chemical/process engineering. It is also an excellent textbook for courses in bioprocessing technology, renewable resources, green energy, and sustainable chemistry.


Algal Biorefinery: An Integrated Approach

Algal Biorefinery: An Integrated Approach

Author: Debabrata Das

Publisher: Springer

Published: 2015-11-30

Total Pages: 479

ISBN-13: 3319228137

DOWNLOAD EBOOK

This book critically discusses different aspects of algal production systems and several of the drawbacks related to microalgal biomass production, namely, low biomass yield, and energy-consuming harvesting, dewatering, drying and extraction processes. These provide a background to the state-of-the-art technologies for algal cultivation, CO2 sequestration, and large-scale application of these systems. In order to tap the commercial potential of algae, a biorefinery concept has been proposed that could help to extract maximum benefits from algal biomass. This refinery concept promotes the harvesting of multiple products from the feedstock so as to make the process economically attractive. For the last few decades, algal biomass has been explored for use in various products such as fuel, agricultural crops, pigments and pharmaceuticals, as well as in bioremediation. To meet the huge demand, there has been a focus on large-scale production of algal biomass in closed or open photobioreactors. Different nutritional conditions for algal growth have been explored, such as photoautotrophic, heterotrophic, mixotrophic and oleaginous. This book is aimed at a wide audience, including undergraduates, postgraduates, academics, energy researchers, scientists in industry, energy specialists, policy makers and others who wish to understand algal biorefineries and also keep abreast of the latest developments.


Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies

Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies

Author: Riccardo Basosi

Publisher: Springer

Published: 2018-12-15

Total Pages: 184

ISBN-13: 3319937405

DOWNLOAD EBOOK

This book deals with the application of life cycle assessment (LCA) methodology to sustainable energy systems and technologies. It reviews the state-of-the-art of the Italian experiences on the LCA applied to energy, and the most recent results from research in this field, with a particular focus on renewables, bio-energy and sustainable solutions. The contributors describe in detail the applications of LCA to various energy system topics, including: • electricity production, smart energy grids and energy storage systems;• renewable energy production from biomass;• production of biodiesel from microalgae;• environmental impacts of biomass power plants; and• geothermal energy production. These topics are supported by critical reviews and case studies, with discussions of Italian examples, demonstrating LCA’s application to various energy systems. A particular focus is placed on bio-energies and bio-energy systems, demonstrating how LCA can be used for optimal bio-energy production. This book offers an opportunity for researchers and advanced practitioners in the field of LCA to learn more about the application of LCA methodology to energy systems and technologies. It will also be of interest to students, as it enables them to understand the environmental impacts of energy systems and sustainable energy technologies, through the analysis of their life cycles.


Solid Waste Technology and Management

Solid Waste Technology and Management

Author: Thomas Christensen

Publisher: John Wiley & Sons

Published: 2011-08-02

Total Pages: 1196

ISBN-13: 1119955025

DOWNLOAD EBOOK

The collection, transportation and subsequent processing of waste materials is a vast field of study which incorporates technical, social, legal, economic, environmental and regulatory issues. Common waste management practices include landfilling, biological treatment, incineration, and recycling – all boasting advantages and disadvantages. Waste management has changed significantly over the past ten years, with an increased focus on integrated waste management and life-cycle assessment (LCA), with the aim of reducing the reliance on landfill with its obvious environmental concerns in favour of greener solutions. With contributions from more than seventy internationally known experts presented in two volumes and backed by the International Waste Working Group and the International Solid Waste Association, detailed chapters cover: Waste Generation and Characterization Life Cycle Assessment of Waste Management Systems Waste Minimization Material Recycling Waste Collection Mechanical Treatment and Separation Thermal Treatment Biological Treatment Landfilling Special and Hazardous Waste Solid Waste Technology & Management is a balanced and detailed account of all aspects of municipal solid waste management, treatment and disposal, covering both engineering and management aspects with an overarching emphasis on the life-cycle approach.


Algal Biorefinery

Algal Biorefinery

Author: Ajay K. Dalai

Publisher: Routledge

Published: 2021-07-08

Total Pages: 304

ISBN-13: 1000410838

DOWNLOAD EBOOK

This book enables readers to understand the theoretical aspects, key steps and scientific techniques with a detailed mechanism to produce biofuels from algae. Each chapter provides the latest developments and recent advancements starting from algal cultivation techniques to the production of value-added green fuels, chemicals and products with wide applications. The volume brings together a broad range of international and interdisciplinary experts, including chemical and biological engineers, biotechnologists, process engineers, environmentalists, pharmacists and nutritionists, to one platform to explore the beneficial aspects and challenges for an algal-based biorefinery. Chapters address cutting-edge issues surrounding algal cultivation, including genetic modification of algal strains, design and optimization of photobioreactors and open-pond systems, algal oil extraction techniques and algal-derived fuel products (biodiesel, bio-gasoline, jet fuels and bio-oil). Finally, the book considers the potential environmental impacts for establishing a sustainable algal biorefinery through lifecycle analysis, techno-economic assessment and supply chain management. This book will be an important resource for students, academics and professionals interested in algal cultivation, biofuels and agricultural engineering, and renewable energy and sustainable development more broadly.


Thermochemical Processing of Biomass

Thermochemical Processing of Biomass

Author: Robert C. Brown

Publisher: John Wiley & Sons

Published: 2019-05-28

Total Pages: 426

ISBN-13: 1119417570

DOWNLOAD EBOOK

A comprehensive examination of the large number of possible pathways for converting biomass into fuels and power through thermochemical processes Bringing together a widely scattered body of information into a single volume, this book provides complete coverage of the many ways that thermochemical processes are used to transform biomass into fuels, chemicals and power. Fully revised and updated, this new edition highlights the substantial progress and recent developments that have been made in this rapidly growing field since publication of the first edition and incorporates up-to-date information in each chapter. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2nd Edition incorporates two new chapters covering: condensed phased reactions of thermal deconstruction of biomass and life cycle analysis of thermochemical processing systems. It offers a new introductory chapter that provides a more comprehensive overview of thermochemical technologies. The book also features fresh perspectives from new authors covering such evolving areas as solvent liquefaction and hybrid processing. Other chapters cover combustion, gasification, fast pyrolysis, upgrading of syngas and bio-oil to liquid transportation fuels, and the economics of thermochemically producing fuels and power, and more. Features contributions by a distinguished group of European and American researchers offering a broad and unified description of thermochemical processing options for biomass Combines an overview of the current status of thermochemical biomass conversion as well as engineering aspects to appeal to the broadest audience Edited by one of Biofuels Digest’s "Top 100 People" in bioenergy for six consecutive years Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2nd Edition will appeal to all academic researchers, process chemists, and engineers working in the field of biomass conversion to fuels and chemicals. It is also an excellent book for graduate and advanced undergraduate students studying biomass, biofuels, renewable resources, and energy and power generation.