Energy Research Abstracts

Energy Research Abstracts

Author:

Publisher:

Published: 1994

Total Pages: 806

ISBN-13:

DOWNLOAD EBOOK

Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.


Preventing Fuel Failure for a Beyond Design Basis Accident in a Fluoride Salt Cooled High Temperature Reactor

Preventing Fuel Failure for a Beyond Design Basis Accident in a Fluoride Salt Cooled High Temperature Reactor

Author: Matthew Joseph Minck

Publisher:

Published: 2013

Total Pages: 177

ISBN-13:

DOWNLOAD EBOOK

The fluoride salt-cooled high-temperature reactor (FHR) combines high-temperature coated-particle fuel with a high-temperature salt coolant for a reactor with unique market and safety characteristics. This combination can eliminate large-scale radionuclide releases by avoiding major fuel failure during a catastrophic Beyond Design Basis Accident (BDBA). The high-temperature core contains liquid salt coolant surrounded by a liquid salt buffer; these salts limit core heatup while decay heat drops. The vessel insulation is designed to fail during a BDBA. The silo contains a frozen BDBA salt designed to melt and surround the reactor vessel during a major accident to accelerate heat transfer from the vessel. These features provide the required temperature gradient to drive decay heat from core to the vessel wall and to the environment below fuel failure temperatures. A 1047 MWth FHR was modeled using the STAR-CCM+ computational fluid dynamics package. Peak temperatures and heat transfer phenomena were calculated, focusing on feasibility of melting the BDBA salt that improves heat transfer from vessel to silo. A simplified wavelength-independent radiation model was examined to approximate the heat transfer capability with radiation heat transfer. The FHR BDBA system kept peak temperatures below the fuel failure point in all cases. Reducing the reactor vessel-silo gap size minimized the time to melt the BDBA salt. Radiation heat transfer is a dominant factor in the high-temperature accident sequence. It keeps peak fuel temperatures hundreds of degrees lower than with convection and conduction only; it makes higher core powers feasible. The FHR's atmospheric pressure design allows a thin reactor vessel, ensuring the high accident temperatures reach the vessel's outer surface, creating a large temperature difference from the vessel to the frozen salt. This greatly accelerates the heat transfer over current reactor designs with thick, relatively cool accident outer vessel temperatures. The frozen BDBA salt in the FHR places a limit on the upper temperature at the vessel outer boundary for significant time; it is a substantial heat sink for the accident duration. Finally, surrounding the FHR vessel, the convection of hot air, and circulating salt later in the accident, preferentially transports heat upward in the FHR; this provides a conduction path through the concrete silo to the atmosphere above the FHR.


RIA Failure of High Burnup Fuel Rod Irradiated in the Leibstadt Reactor

RIA Failure of High Burnup Fuel Rod Irradiated in the Leibstadt Reactor

Author: S. Valizadeh

Publisher:

Published: 2010

Total Pages: 19

ISBN-13:

DOWNLOAD EBOOK

A high burnup boiling water reactor fuel rod was subjected to reactivity initiation accident (RIA) tests in a research reactor. Two ramp tests were carried out under almost identical irradiation conditions, resulting in cladding failure in a room temperature test, while no failure was observed in a high temperature test. An adjacent segment of the same rod was used for mechanical expansion-due-to-compression (EDC) testing simulating the pellet-cladding mechanical interaction loadings on the cladding during an in-reactor RIA. The EDC tests show the existence of a transition temperature where an abrupt increase in the specimen hoop strain at failure occurs. Additional tests revealed that the transition temperature depends on hydrogen concentration. A possible effect of the rapid heating, which is a specific condition for an in-reactor RIA compared to the static heating in the EDC tests, was verified in the rapid heating/loading tests on unirradiated hydrided Zircaloy, when both loading and heating are performed simultaneously within 50-80 ms. It was shown that strain to failure is dependent on the instantaneous material temperature and is not affected by the pre-heating history. The results show good consistency between the EDC and in-reactor pulse test data. It is concluded that the EDC test can provide valuable information to predict the in-reactor RIA fuel failure.