Application of Parallel Processing to the Investigation of Supercritical Droplet Evaporation and Combustion Using Molecular Dynamics

Application of Parallel Processing to the Investigation of Supercritical Droplet Evaporation and Combustion Using Molecular Dynamics

Author: Michael Micci

Publisher:

Published: 1997

Total Pages: 12

ISBN-13:

DOWNLOAD EBOOK

Molecular dynamics (MD) implemented on parallel processors was used to model supercritical droplet phenomena occurring in combustion devices. The use of molecular dynamics allows the modeling of supercritical phenomena without an a priori knowledge of the equation of state or transport properties of the individual components or the mixture. Three-dimensional supercritical oxygen vaporization into gaseous oxygen and helium using two-site Lennard-Jones potentials for the oxygen has been modeled and both the disappearance of surface tension above the critical point and the modification of the critical point for a binary mixture have been observed. A distinct change in droplet morphology was observed when passing through its critical point. The droplet remains spherical as it vaporizes under subcritical conditions but becomes broken and cloud-like when supercritical. Equations of state and transport coefficients for mass, momentum and energy have been calculated for supercritical argon, nitrogen and oxygen which agree with NIST values.


Simulation of Droplet Evaporation in Supercritical Environments Using Parallel Molecular Dynamics

Simulation of Droplet Evaporation in Supercritical Environments Using Parallel Molecular Dynamics

Author:

Publisher:

Published: 1996

Total Pages: 169

ISBN-13:

DOWNLOAD EBOOK

The complete evaporation of three-dimensional submicron droplets under both subcritical and supercritical conditions has been modeled using molecular dynamics (MD). This work represents a first step toward an accurate analytical modeling of combustion in supercritical environments. In this initial study the two-phase simulations consist entirely of argon atoms distributed between a single droplet and its surrounding vapor. The inter-atomic forces are based on a Lennard-Jones 12-6 potential, and the resultant atomic displacements are determined using a modified velocity Verlet algorithm. Linked cell lists in combination with Verlet neighbor lists allow efficient modeling of the large and diverse simulations. A non-cubic periodic boundary, specifically a truncated octahedron, is used to minimize periodicity effects. A unique method, using the linked cell structure, streamlines the associated boundary computations. The linked cells are also used as domains for density, temperature and surface tension computations. This allows a contouring of these properties. The surface tension measure is a unique development. p7.


ARO and AFOSR Contractors Meeting in Chemical Propulsion, Held in Virginia Beach, Virginia on 3-6 June 1996

ARO and AFOSR Contractors Meeting in Chemical Propulsion, Held in Virginia Beach, Virginia on 3-6 June 1996

Author: David M. Mann

Publisher:

Published: 1996

Total Pages: 302

ISBN-13:

DOWNLOAD EBOOK

Partial contents: Supercritical droplet behavior; Fundamentals of acoustic instabilities in liquid-propellant rockets; Modeling liquid jet atomization proceses; Liquid-propellant droplets dynamics and combustions in supercritical forced convective environments; Contributions of shear coaxial injectors to liquid rocket motor combustion instabilities; High pressure combustion studies under combustion driven oscillatory flow conditions; Droplet collision on liquid propellant combustion; Combustion and plumes; Development of a collisional radiative emission model for strongly nonequilibrium flows; Energy transfer processes in the production of excited states in reacting rocket flows; modeling nonequilibrium radiation in high altitude plumes; kinetics of plume radiation, and of HEDMs and metallic fuels combustion; Nonsteady combustion mechanisms of advanced solid propellants; Chemical mechanisms at the burning surface. p15


Droplets and Sprays

Droplets and Sprays

Author: Saptarshi Basu

Publisher: Springer

Published: 2018-01-03

Total Pages: 0

ISBN-13: 9789811074486

DOWNLOAD EBOOK

This book focuses on droplets and sprays relevant to combustion and propulsion applications. The book includes fundamental studies on the heating, evaporation and combustion of individual droplets and basic mechanisms of spray formation. The contents also extend to the latest analytical, numerical and experimental techniques for investigating the behavior of sprays in devices like combustion engines and gas turbines. In addition, the book explores several emerging areas like interactions between sprays and flames and the dynamic characteristics of spray combustion systems on the fundamental side, as well as the development of novel fuel injectors for specific devices on the application side. Given its breadth of coverage, the book will benefit researchers and professionals alike.