A Structural Account of Mathematics

A Structural Account of Mathematics

Author: Charles S. Chihara

Publisher: Clarendon Press

Published: 2003-11-20

Total Pages: 395

ISBN-13: 0191533106

DOWNLOAD EBOOK

Charles Chihara's new book develops and defends a structural view of the nature of mathematics, and uses it to explain a number of striking features of mathematics that have puzzled philosophers for centuries. The view is used to show that, in order to understand how mathematical systems are applied in science and everyday life, it is not necessary to assume that its theorems either presuppose mathematical objects or are even true. Chihara builds upon his previous work, in which he presented a new system of mathematics, the constructibility theory, which did not make reference to, or presuppose, mathematical objects. Now he develops the project further by analysing mathematical systems currently used by scientists to show how such systems are compatible with this nominalistic outlook. He advances several new ways of undermining the heavily discussed indispensability argument for the existence of mathematical objects made famous by Willard Quine and Hilary Putnam. And Chihara presents a rationale for the nominalistic outlook that is quite different from those generally put forward, which he maintains have led to serious misunderstandings. A Structural Account of Mathematics will be required reading for anyone working in this field.


A Structural Account of Mathematics

A Structural Account of Mathematics

Author: Charles S. Chihara

Publisher: Clarendon Press

Published: 2004

Total Pages: 395

ISBN-13: 0199267537

DOWNLOAD EBOOK

Charles Chihara's new book develops and defends a structural view of the nature of mathematics, and uses it to explain a number of striking features of mathematics that have puzzled philosophers for centuries. The view is used to show that, in order to understand how mathematical systems areapplied in science and everyday life, it is not necessary to assume that its theorems either presuppose mathematical objects or are even true.Chihara builds upon his previous work, in which he presented a new system of mathematics, the constructibility theory, which did not make reference to, or presuppose, mathematical objects. Now he develops the project further by analysing mathematical systems currently used by scientists to show howsuch systems are compatible with this nominalistic outlook. He advances several new ways of undermining the heavily discussed indispensability argument for the existence of mathematical objects made famous by Willard Quine and Hilary Putnam. And Chihara presents a rationale for the nominalisticoutlook that is quite different from those generally put forward, which he maintains have led to serious misunderstandings.A Structural Account of Mathematics will be required reading for anyone working in this field.


Mathematical Structuralism

Mathematical Structuralism

Author: Geoffrey Hellman

Publisher: Cambridge University Press

Published: 2018-11-29

Total Pages: 167

ISBN-13: 110863074X

DOWNLOAD EBOOK

The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the Element considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives.


Fundamental Mathematical Structures of Quantum Theory

Fundamental Mathematical Structures of Quantum Theory

Author: Valter Moretti

Publisher: Springer

Published: 2019-06-20

Total Pages: 345

ISBN-13: 3030183467

DOWNLOAD EBOOK

This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.


Philosophy of Mathematics

Philosophy of Mathematics

Author: Stewart Shapiro

Publisher: Oxford University Press

Published: 1997-08-07

Total Pages: 296

ISBN-13: 0198025459

DOWNLOAD EBOOK

Do numbers, sets, and so forth, exist? What do mathematical statements mean? Are they literally true or false, or do they lack truth values altogether? Addressing questions that have attracted lively debate in recent years, Stewart Shapiro contends that standard realist and antirealist accounts of mathematics are both problematic. As Benacerraf first noted, we are confronted with the following powerful dilemma. The desired continuity between mathematical and, say, scientific language suggests realism, but realism in this context suggests seemingly intractable epistemic problems. As a way out of this dilemma, Shapiro articulates a structuralist approach. On this view, the subject matter of arithmetic, for example, is not a fixed domain of numbers independent of each other, but rather is the natural number structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle. Using this framework, realism in mathematics can be preserved without troublesome epistemic consequences. Shapiro concludes by showing how a structuralist approach can be applied to wider philosophical questions such as the nature of an "object" and the Quinean nature of ontological commitment. Clear, compelling, and tautly argued, Shapiro's work, noteworthy both in its attempt to develop a full-length structuralist approach to mathematics and to trace its emergence in the history of mathematics, will be of deep interest to both philosophers and mathematicians.


Mathematics and Scientific Representation

Mathematics and Scientific Representation

Author: Christopher Pincock

Publisher: Oxford University Press

Published: 2012-01-13

Total Pages: 352

ISBN-13: 0190208570

DOWNLOAD EBOOK

Mathematics plays a central role in much of contemporary science, but philosophers have struggled to understand what this role is or how significant it might be for mathematics and science. In this book Christopher Pincock tackles this perennial question in a new way by asking how mathematics contributes to the success of our best scientific representations. In the first part of the book this question is posed and sharpened using a proposal for how we can determine the content of a scientific representation. Several different sorts of contributions from mathematics are then articulated. Pincock argues that each contribution can be understood as broadly epistemic, so that what mathematics ultimately contributes to science is best connected with our scientific knowledge. In the second part of the book, Pincock critically evaluates alternative approaches to the role of mathematics in science. These include the potential benefits for scientific discovery and scientific explanation. A major focus of this part of the book is the indispensability argument for mathematical platonism. Using the results of part one, Pincock argues that this argument can at best support a weak form of realism about the truth-value of the statements of mathematics. The book concludes with a chapter on pure mathematics and the remaining options for making sense of its interpretation and epistemology. Thoroughly grounded in case studies drawn from scientific practice, this book aims to bring together current debates in both the philosophy of mathematics and the philosophy of science and to demonstrate the philosophical importance of applications of mathematics.


Fundamental Structures of Algebra and Discrete Mathematics

Fundamental Structures of Algebra and Discrete Mathematics

Author: Stephan Foldes

Publisher: John Wiley & Sons

Published: 2011-02-14

Total Pages: 362

ISBN-13: 1118031431

DOWNLOAD EBOOK

Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.


Introduction · to Mathematical Structures and · Proofs

Introduction · to Mathematical Structures and · Proofs

Author: Larry Gerstein

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 355

ISBN-13: 1468467085

DOWNLOAD EBOOK

This is a textbook for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, and so on. Without such a "bridge" course, most upper division instructors feel the need to start their courses with the rudiments of logic, set theory, equivalence relations, and other basic mathematical raw materials before getting on with the subject at hand. Students who are new to higher mathematics are often startled to discover that mathematics is a subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create mathematical proofs. Mastery of an assortment of technical tricks may have carried the students through calculus, but it is no longer a guarantee of academic success. Students need experience in working with abstract ideas at a nontrivial level if they are to achieve the sophisticated blend of knowledge, disci pline, and creativity that we call "mathematical maturity. " I don't believe that "theorem-proving" can be taught any more than "question-answering" can be taught. Nevertheless, I have found that it is possible to guide stu dents gently into the process of mathematical proof in such a way that they become comfortable with the experience and begin asking them selves questions that will lead them in the right direction.


Computable Structure Theory

Computable Structure Theory

Author: Antonio Montalbán

Publisher: Cambridge University Press

Published: 2021-06-24

Total Pages: 214

ISBN-13: 1108534422

DOWNLOAD EBOOK

In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.


Structures Mères: Semantics, Mathematics, and Cognitive Science

Structures Mères: Semantics, Mathematics, and Cognitive Science

Author: Alberto Peruzzi

Publisher: Springer Nature

Published: 2020-09-14

Total Pages: 191

ISBN-13: 3030518213

DOWNLOAD EBOOK

This book reports on cutting-edge concepts related to Bourbaki’s notion of structures mères. It merges perspectives from logic, philosophy, linguistics and cognitive science, suggesting how they can be combined with Bourbaki’s mathematical structuralism in order to solve foundational, ontological and epistemological problems using a novel category-theoretic approach. By offering a comprehensive account of Bourbaki’s structuralism and answers to several important questions that have arisen in connection with it, the book provides readers with a unique source of information and inspiration for future research on this topic.