A Direct Active Set Algorithm for Large Sparse Quadratic Programs with Simple Bounds

A Direct Active Set Algorithm for Large Sparse Quadratic Programs with Simple Bounds

Author: Cornell University. Dept. of Computer Science

Publisher:

Published: 1988

Total Pages: 36

ISBN-13:

DOWNLOAD EBOOK

We show how a direct active set method for solving definite and indefinite quadratic programs with simple bounds can be efficiently implemented for large sparse problems. All of the necessary factorizations can be carried out in a static data structure that is set up before the numeric computation begins. The space required for these factorizations is no larger than that required for a single sparse Cholesky factorization of a matrix with the same sparsity structure as the Hessian of the quadratic. We propose several improvements to this basic algorithm: a new way to find a search direction in the indefinite case that allows us to free more than one variable at a time and a new heuristic method for finding a starting point. These ideas are motivated by the two-norm trust region problem. Additionally, we also show how projection techniques can be used to add several constraints to the active set at each iteration. Our experimental results show that an algorithm with these improvements runs much faster than the basic algorithm for positive definite problems and finds local minima with lower function values for indefinite problems.


Modern Numerical Nonlinear Optimization

Modern Numerical Nonlinear Optimization

Author: Neculai Andrei

Publisher: Springer Nature

Published: 2022-10-18

Total Pages: 824

ISBN-13: 3031087208

DOWNLOAD EBOOK

This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. This clear, friendly, and rigorous exposition discusses the theory behind the nonlinear optimization algorithms for understanding their properties and their convergence, enabling the reader to prove the convergence of his/her own algorithms. It covers cases and computational performances of the most known modern nonlinear optimization algorithms that solve collections of unconstrained and constrained optimization test problems with different structures, complexities, as well as those with large-scale real applications. The book is addressed to all those interested in developing and using new advanced techniques for solving large-scale unconstrained or constrained complex optimization problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master in mathematical programming will find plenty of recent information and practical approaches for solving real large-scale optimization problems and applications.


Numerical Methods for Least Squares Problems

Numerical Methods for Least Squares Problems

Author: Ake Bjorck

Publisher: SIAM

Published: 1996-01-01

Total Pages: 425

ISBN-13: 9781611971484

DOWNLOAD EBOOK

The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.


Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology

Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology

Author: Neculai Andrei

Publisher: Springer

Published: 2017-12-04

Total Pages: 514

ISBN-13: 3319583565

DOWNLOAD EBOOK

This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical optimization models, is introduced to model and solve continuous nonlinear optimization applications. More than 15 real nonlinear optimization applications in algebraic and GAMS representation are presented which are used to illustrate the performances of the algorithms described in this book. Theoretical and computational results, methods, and techniques effective for solving nonlinear optimization problems, are detailed through the algorithms MINOS, KNITRO, CONOPT, SNOPT and IPOPT which work in GAMS technology.


Large-scale Numerical Optimization

Large-scale Numerical Optimization

Author: Thomas Frederick Coleman

Publisher: SIAM

Published: 1990-01-01

Total Pages: 278

ISBN-13: 9780898712681

DOWNLOAD EBOOK

Papers from a workshop held at Cornell University, Oct. 1989, and sponsored by Cornell's Mathematical Sciences Institute. Annotation copyright Book News, Inc. Portland, Or.


Algorithms for Continuous Optimization

Algorithms for Continuous Optimization

Author: E. Spedicato

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 572

ISBN-13: 9400903693

DOWNLOAD EBOOK

The NATO Advanced Study Institute on "Algorithms for continuous optimiza tion: the state of the art" was held September 5-18, 1993, at II Ciocco, Barga, Italy. It was attended by 75 students (among them many well known specialists in optimiza tion) from the following countries: Belgium, Brasil, Canada, China, Czech Republic, France, Germany, Greece, Hungary, Italy, Poland, Portugal, Rumania, Spain, Turkey, UK, USA, Venezuela. The lectures were given by 17 well known specialists in the field, from Brasil, China, Germany, Italy, Portugal, Russia, Sweden, UK, USA. Solving continuous optimization problems is a fundamental task in computational mathematics for applications in areas of engineering, economics, chemistry, biology and so on. Most real problems are nonlinear and can be of quite large size. Devel oping efficient algorithms for continuous optimization has been an important field of research in the last 30 years, with much additional impetus provided in the last decade by the availability of very fast and parallel computers. Techniques, like the simplex method, that were already considered fully developed thirty years ago have been thoroughly revised and enormously improved. The aim of this ASI was to present the state of the art in this field. While not all important aspects could be covered in the fifty hours of lectures (for instance multiob jective optimization had to be skipped), we believe that most important topics were presented, many of them by scientists who greatly contributed to their development.


A Regularized Active-set Method for Sparse Convex Quadratic Programming

A Regularized Active-set Method for Sparse Convex Quadratic Programming

Author: Christopher Mario Maes

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

An active-set algorithm is developed for solving convex quadratic programs (QPs). The algorithm employs primal regularization within a bound-constrained augmented Lagrangian method. This leads to a sequence of QP subproblems that are feasible and strictly convex, and whose KKT systems are guaranteed to be nonsingular for any active set. A simplified, single-phase algorithm becomes possible for each QP subproblem. There is no need to control the inertia of the KKT system defining each search direction, and a simple step-length procedure may be used without risk of cycling in the presence of degeneracy. Since all KKT systems are nonsingular, they can be factored with a variety of sparse direct linear solvers. Block-LU updates of the KKT factors allow for active-set changes. The principal benefit of primal and dual regularization is that warm starts are possible from any given active set. This is vital inside sequential quadratic programming (SQP) methods for nonlinear optimization, such as the SNOPT solver. The method provides a reliable approach to solving sparse generalized least-squares problems. Ordinary least-squares problems with Tikhonov regularization and bounds can be solved as a single QP subproblem. The algorithm is implemented as the QPBLUR solver (Matlab and Fortran 95 versions) and the Fortran version has been integrated into SNOPT. The performance of QPBLUR is evaluated on a test set of large convex QPs, and on the sequences of QPs arising from SNOPT's SQP method.